[image: Image]
[image: Pre- Training… Pre- Training
Starter Guide]
Pre- Training
Starter Guide

[image: A Kindred Dog PDX… A Kindred Dog PDX
E-book]
 A Kindred Dog PDX
E-book

[image: The know before you go The know before you go]
[image: border-image.png]The know before
you go

[image: Dog training is a lifestyle, not an end goal. There will be ups and there will be downs but the important thing is that the relationship will be growing and getting stronger between the handler and the dog during all of those moments. Before getting into the hands-on part of training it is important to understand the beginnings. Dogs don’t come programmed to know or understand anything we ask of them, nor do we come programmed to know or understand how to teach or live with the dog. One thing is for certain is that both dog and human can learn and live happily together, it may just take some outside help. Dog training is a lifestyle, not an end goal. There will be ups and there will be downs but the important thing is that the relationship will be growing and getting stronger between the handler and the dog during all of those moments. Before getting into the hands-on part of training it is important to understand the beginnings. Dogs don’t come programmed to know or understand anything we ask of them, nor do we come programmed to know or understand how to teach or live with the dog. One thing is for certain is that both dog and human can learn and live happily together, it may just take some outside help.]
Dog training is a lifestyle, not an end goal. There will be ups and there will be downs but
the important thing is that the relationship will be growing and getting stronger between
the handler and the dog during all of those moments. Before getting into the hands-on
part of training it is important to understand the beginnings. Dogs don’t come
programmed to know or understand anything we ask of them, nor do we come
programmed to know or understand how to teach or live with the dog. One thing is for
certain is that both dog and human can learn and live happily together, it may just take
some outside help.

[image: Introduction Introduction]
[image: border-image-1.png]Introduction

[image: Image]
[image: Chapter 1 Chapter 1]
[image: border-image-2.png]Chapter 1

[image: Goals and Expectations Goals and Expectations]
[image: border-image-3.png]Goals and Expectations

[image: Rectangle Rectangle]
[image: When teaching our dogs something new it is important not to expect things because they are learning. Expecting something means the dog would have prior knowledge and would know what to do. However, when the dog is learning something new, it means just that, they are learning something new. They have no prior knowledge of what is being taught. Therefore it would be unfair to have some sort of expectation that they complete some sort of task or do something in a particular way when they do not know what the expectation is. 	When teaching our dogs something new it is important not to expect things because they are learning. Expecting something means the dog would have prior knowledge and would know what to do. However, when the dog is learning something new, it means just that, they are learning something new. They have no prior knowledge of what is being taught. Therefore it would be unfair to have some sort of expectation that they complete some sort of task or do something in a particular way when they do not know what the expectation is.

]
	When teaching our dogs something new it is
important not to expect things because they are
learning. Expecting something means the dog
would have prior knowledge and would know
what to do. However, when the dog is learning
something new, it means just that, they are
learning something new. They have no prior
knowledge of what is being taught. Therefore it
would be unfair to have some sort of expectation
that they complete some sort of task or do
something in a particular way when they do not
know what the expectation is.

[image: Rectangle
]

[image: Goals are a great piece of the training puzzle because this can give guidance on the direction of the training. Goals also take time. There can be short term, long term, sometimes they are met, sometimes goals evolve or change as more knowledge is gained and experiences have been had. An example of a goal when it pertains to dog training can be teaching your dog a recall or staying on its bed while you cook dinner. You start from the beginning by teaching the basics of the behavior and increase the challenge that moves towards the goal you have in mind. With enough time and practice you can eventually reach your goal of recalling your dog to you from different distractions or have your dog hang out on their bed while you cook dinner but you may discover things and change your perception of these goals as you work on them. 	Goals are a great piece of the training puzzle because this can give guidance on the direction of the training. Goals also take time. There can be short term, long term, sometimes they are met, sometimes goals evolve or change as more knowledge is gained and experiences have been had. An example of a goal when it pertains to dog training can be teaching your dog a recall or staying on its bed while you cook dinner. You start from the beginning by teaching the basics of the behavior and increase the challenge that moves towards the goal you have in mind. With enough time and practice you can eventually reach your goal of recalling your dog to you from different distractions or have your dog hang out on their bed while you cook dinner but you may discover things and change your perception of these goals as you work on them.
]
	Goals are a great piece of the training puzzle because this can give guidance on the
direction of the training. Goals also take time. There can be short term, long term,
sometimes they are met, sometimes goals evolve or
change as more knowledge is gained and experiences
have been had. An example of a goal when it pertains to
dog training can be teaching your dog a recall or staying
on its bed while you cook dinner. You start from the
beginning by teaching the basics of the behavior and
increase the challenge that moves towards the goal you
have in mind. With enough time and practice you can
eventually reach your goal of recalling your dog to you
from different distractions or have your dog hang out on their bed while you cook dinner but
you may discover things and change your perception of these goals as you work on them.

[image: An expectations is the anticipation something will happen or some sort of outcome will come about in a particular way. Expectations aren’t bad as long as there has been enough repetitions, planning, and communication that would warrant the anticipation of a particular outcome. When teaching dogs, it is important to be aware of the expectations that are being created in the dogs and ourselves intentionally or unintentionally. Expectations should only be considered once we have put in the time and effort in the training and have seen that the dog is capable of it. In the beginning, remove any expectations and through the training let the dog build those up by showing what they are capable of doing as time goes on. 	An expectations is the anticipation something will happen or some sort of outcome will come about in a particular way. Expectations aren’t bad as long as there has been enough repetitions, planning, and communication that would warrant the anticipation of a particular outcome. When teaching dogs, it is important to be aware of the expectations that are being created in the dogs and ourselves intentionally or unintentionally. Expectations should only be considered once we have put in the time and effort in the training and have seen that the dog is capable of it. In the beginning, remove any expectations and through the training let the dog build those up by showing what they are capable of doing as time goes on.

]
	An expectations is the anticipation something will happen or some sort of outcome
will come about in a particular way. Expectations aren’t bad as long as there has been
enough repetitions, planning, and communication that would warrant the anticipation of a
particular outcome. When teaching dogs, it is important to be aware of the expectations
that are being created in the dogs and ourselves intentionally or unintentionally.
Expectations should only be considered once we have put in the time and effort in the
training and have seen that the dog is capable of it. In the beginning, remove any
expectations and through the training let the dog build those up by showing what they are
capable of doing as time goes on.

[image: Image]
[image: Chapter 2 Chapter 2]
[image: border-image-4.png]Chapter 2

[image: Have a game plan Have a game plan]
[image: border-image-5.png]Have a game plan

[image: When starting out with training having an idea of what you are trying to do can help with the teaching process. Doing things randomly and not understanding what the importance or how it pertains to the goals can create confusion, frustration, and cause a lack of motivation. Also the lack of a game plan can lead to unrealistic expectations and goals. Training should not create frustration or cause a lack of motivation. It should be seen as fun and also lead toward relationship building and bonding time between the dog and owner. 	When starting out with training having an idea of what you are trying to do can help with the teaching process. Doing things randomly and not understanding what the importance or how it pertains to the goals can create confusion, frustration, and cause a lack of motivation. Also the lack of a game plan can lead to unrealistic expectations and goals. Training should not create frustration or cause a lack of motivation. It should be seen as fun and also lead toward relationship building and bonding time between the dog and owner.]
	When starting out with training having an idea of what you are trying to do can help
with the teaching process. Doing things
randomly and not understanding what the
importance or how it pertains to the goals
can create confusion, frustration, and cause
a lack of motivation. Also the lack of a game
plan can lead to unrealistic expectations and
goals. Training should not create frustration
or cause a lack of motivation. It should be
seen as fun and also lead toward relationship
building and bonding time between the dog
and owner.

[image: Having a plan that starts from the beginning and builds up from easy ideas to more challenging concepts will create understanding of how things are connected and how they should flow in the learning/teaching process. Unless you have experience with training dogs, coming up with a game plan can be challenging. There are many random videos on Instagram and YouTube that jump around from easy to challenging things. These videos can be beneficial if you have an understanding of what is going on, however, if you are just getting started, working with a professional or paying for a course can help create clarity in how to go about training your dog. 	Having a plan that starts from the beginning and builds up from easy ideas to more challenging concepts will create understanding of how things are connected and how they should flow in the learning/teaching process. Unless you have experience with training dogs, coming up with a game plan can be challenging. There are many random videos on Instagram and YouTube that jump around from easy to challenging things. These videos can be beneficial if you have an understanding of what is going on, however, if you are just getting started, working with a professional or paying for a course can help create clarity in how to go about training your dog.
]
	Having a plan that starts from the beginning and builds up from easy ideas to more
challenging concepts will create understanding of
how things are connected and how they should flow
in the learning/teaching process. Unless you have
experience with training dogs, coming up with a
game plan can be challenging. There are many
random videos on Instagram and YouTube that jump
around from easy to challenging things. These
videos can be beneficial if you have an
understanding of what is going on, however, if you
are just getting started, working with a professional
or paying for a course can help create clarity in how to go about training your dog.

[image: The biggest thing about the game plan is education. Investing time and money to learn how to teach. If you are new to training it will be learning new concepts and skills and then applying those things to teaching the dog. Being new to something should be taken in to consideration, so going slow (without expectations) is key to achieving success. Gaining knowledge and practicing will improve the skill set that is being learned not only for the human but also the dog, however this will take time so patience is something that must be exercised. Investing in education will also help with learning how to troubleshoot, or create a plan b and c. Things are rarely cookie cutter clean to a one size fits all but a lot of solutions are not far off from each other. Learning how to handle things that come up unexpectedly takes time to learn but can be developed and will only make things clearer for the dog and handler in the long run. 	The biggest thing about the game plan is education. Investing time and money to learn how to teach. If you are new to training it will be learning new concepts and skills and then applying those things to teaching the dog. Being new to something should be taken in to consideration, so going slow (without expectations) is key to achieving success. Gaining knowledge and practicing will improve the skill set that is being learned not only for the human but also the dog, however this will take time so patience is something that must be exercised. Investing in education will also help with learning how to troubleshoot, or create a plan b and c. Things are rarely cookie cutter clean to a one size fits all but a lot of solutions are not far off from each other. Learning how to handle things that come up unexpectedly takes time to learn but can be developed and will only make things clearer for the dog and handler in the long run.
]
	The biggest thing about the game plan is education. Investing time and money to
learn how to teach. If you are new to training it will be learning new concepts and skills
and then applying those things to teaching the dog. Being new to something should be
taken in to consideration, so going slow (without expectations) is key to achieving
success. Gaining knowledge and practicing will improve the skill set that is being
learned not only for the human but also the dog, however this will take time so patience
is something that must be exercised. Investing in education will also help with learning
how to troubleshoot, or create a plan b and c. Things are rarely cookie cutter clean to a
one size fits all but a lot of solutions are not far off from each other. Learning how to
handle things that come up unexpectedly takes time to learn but can be developed and
will only make things clearer for the dog and handler in the long run.

[image: Image]
[image: Chapter 3 Chapter 3]
[image: border-image-6.png]Chapter 3

[image: Make it easy, Keep it simple Make it easy, Keep it simple]
[image: border-image-7.png]Make it easy,
Keep it simple

[image: Throughout the teaching journey there will be lots of moments of learning and teaching. One of the best things to do is to keep the games simple and easy. Simple to understand and easy to win. This is most important when teaching the basics and more so if the handler is also learning.… 	Throughout the teaching journey there will be lots of moments of learning and teaching. One of the best things to do is to keep the games simple and easy. Simple to understand and easy to win. This is most important when teaching the basics and more so if the handler is also learning.
	Trying to achieve success with challenges can be too much in the beginning. Everything has it’s time and place. However, challenges should only be added when the dog and human understand and can complete things in a easy setting. A phrase that is used frequently is “too much too soon.” Avoiding that and doing the due diligence necessary with the basics will only set up the handler and dog for success when it is time to add more challenges to the training.

]
	Throughout the teaching journey there will be lots of moments of learning and
teaching. One of the best things to do is to keep the games
simple and easy. Simple to understand and easy to win. This
is most important when teaching the basics and more so if
the handler is also learning.
	Trying to achieve success with challenges can be too
much in the beginning. Everything has it’s time and place.
However, challenges should only be added when the dog and
human understand and can complete things in a easy setting.
A phrase that is used frequently is “too much too soon.” Avoiding that and doing the
due diligence necessary with the basics will only set up the handler and dog for
success when it is time to add more challenges to the training.

[image: Watching and observing the dog is a skill to that must be learned. Learning their responses, movements, patterns, etc. goes a long in how they tell you if what you are trying to do is too much or too difficult or if it is time to move on to more challenging things. The dog doesn’t care about the human’s goals or the time frame they want to accomplish things by. The dog must be respected and heard and once this is understood it becomes obvious when they tell you that they are ready to move on to the next chapter of the training journey. Being honest with yourself and your dog will only help you in the long run. 	Watching and observing the dog is a skill to that must be learned. Learning their responses, movements, patterns, etc. goes a long in how they tell you if what you are trying to do is too much or too difficult or if it is time to move on to more challenging things. The dog doesn’t care about the human’s goals or the time frame they want to accomplish things by. The dog must be respected and heard and once this is understood it becomes obvious when they tell you that they are ready to move on to the next chapter of the training journey. Being honest with yourself and your dog will only help you in the long run.]
	Watching and observing the dog is a skill to that must be learned. Learning their
responses, movements, patterns, etc. goes a
long in how they tell you if what you are trying
to do is too much or too difficult or if it is time
to move on to more challenging things. The
dog doesn’t care about the human’s goals or
the time frame they want to accomplish
things by. The dog must be respected and
heard and once this is understood it
becomes obvious when they tell you that
they are ready to move on to the next chapter
of the training journey. Being honest with
yourself and your dog will only help you in the long run.

[image: Image]
[image: Conclusion Conclusion]
[image: border-image-8.png]Conclusion

[image: Dog training isn’t an end goal but how you live with your dogs. It is a lifestyle that is developed through daily practice. When it is done long enough things become easier but training always continues just taking different forms. The most important things that come from training is the relationship that is formed, the trust that is earned and the love that is had through all of the experiences shared together. Training brings you and your dog closer together. However, it isn’t just teaching but rather learning how to do life together in harmony. Love your dog, be what they need you to be, and you will bring the best out of them and they will bring the best out in you. Dog training isn’t an end goal but how you live with your dogs. It is a lifestyle that is developed through daily practice. When it is done long enough things become easier but training always continues just taking different forms. The most important things that come from training is the relationship that is formed, the trust that is earned and the love that is had through all of the experiences shared together. Training brings you and your dog closer together. However, it isn’t just teaching but rather learning how to do life together in harmony. Love your dog, be what they need you to be, and you will bring the best out of them and they will bring the best out in you.]
Dog training isn’t an end goal but how you live with your dogs. It is a lifestyle that is
developed through daily practice. When it is done long enough things become easier
but training always continues just taking different forms. The most important things
that come from training is the relationship that is formed, the trust that is earned and
the love that is had through all of the experiences shared together. Training brings you
and your dog closer together. However, it isn’t just teaching but rather learning how to
do life together in harmony. Love your dog, be what they need you to be, and you will
bring the best out of them and they will bring the best out in you.

OPS/images/image-19.png

OPS/images/border-image-7.png

OPS/images/image-18.png

OPS/images/border-image-6.png

OPS/images/image-22.png

OPS/images/border-image-8.png

OPS/images/IMG_3068.jpg

OPS/images/IMG_9859.jpg

OPS/images/IMG_2639.jpg

OPS/images/image-21.png

OPS/images/image-20.png

OPS/images/image-23.png

OPS/js/book.js

function stopEventPropagation(event) {
 event.stopPropagation();
}

function isKobo() {
 return 'koboApp' in window;
}

function isADE() {
 var epubReadingSystem = navigator.epubReadingSystem;
 if (epubReadingSystem) {
 return epubReadingSystem.name == 'RMSDK';
 }
 return false;
}

function isIOS() {
 var platform = navigator.platform;
 if (["iPad", "iPod", "iPhone"].includes(platform)) {
 return true;
 }
 return false;
}

function useMouselessButtons() {
 return (isADE() || isKobo()) && isIOS();
}

const ViewfinderAction = {
 none : -1,
 maximize : 0,
 goToPrev : 1,
 goToNext : 2,
 count : 3
};

class GalleryViewfinderObserver {
 constructor(owner) {
 this.owner = owner;
 this.galleryObject = owner.galleryObject;
 this.galleryElement = owner.galleryElement;
 this.viewfinderElement = owner.viewfinderElement;
 }

 onCurrentItemChange(oldItemIndex, newItemIndex) {}

 onMouseMoveInViewfinder(point) {
 }

 onMouseEnterViewfinder(point) {
 }

 onMouseLeaveViewfinder(point) {
 }

 onClickInViewfinder(point) {
 }

 onPageShow() {

 }

 onPageHide() {

 }

 onMouseEnterViewfinderChild(viewfinderChildElement) {
 }

 onMouseLeaveViewfinderChild(viewfinderChildElement) {
 }

}

class GalleryButtonsViewfinderManager extends GalleryViewfinderObserver {
 constructor(owner) {
 super(owner);
 var viewfinderElement = this.viewfinderElement;
 this.goToPrevButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToPrev")[0];
 this.goToNextButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToNext")[0];
 this.maximizeButtonElement = viewfinderElement.getElementsByClassName("gallery-button-maximize")[0];
 this.setUpGoToButtonsBounds();
 this.buttonsTimeout = null;
 this.buttonUnderMouseCursor = null;
 this.setButtonMouseEnterLeaveHandlers(this.goToPrevButtonElement);
 this.setButtonFocusHandlers(this.goToPrevButtonElement);
 this.setButtonKeyupHandlers(this.goToPrevButtonElement);
 this.setButtonMouseEnterLeaveHandlers(this.goToNextButtonElement);
 this.setButtonFocusHandlers(this.goToNextButtonElement);
 this.setButtonKeyupHandlers(this.goToNextButtonElement);
 if (this.maximizeButtonElement) {
 this.setButtonMouseEnterLeaveHandlers(this.maximizeButtonElement);
 this.setButtonFocusHandlers(this.maximizeButtonElement);
 }
 }

 setUpGoToButtonsBounds() {
 var preferredButtonMargin = window.getComputedStyle(this.goToPrevButtonElement).getPropertyValue("--margin");
 var minButtonMargin = 2.0;
 var preferredButtonWidth = this.goToPrevButtonElement.getBoundingClientRect().width;
 var preferredButtonLayoutWidth = preferredButtonWidth + 2 * preferredButtonMargin;
 var viewfinderWidth = this.viewfinderElement.getBoundingClientRect().width;
 var buttonLayoutWidth = preferredButtonLayoutWidth;
 if (buttonLayoutWidth > viewfinderWidth / 2) {
 // One button plus its margins must not occupy more than half the viewfinder.
 buttonLayoutWidth = viewfinderWidth / 2;
 }
 var buttonWidth = preferredButtonWidth;
 var buttonMargin = (buttonLayoutWidth - buttonWidth) / 2;
 if (buttonMargin < minButtonMargin) {
 // The margin would result less than the minimum.
 // Shrink the button to ensure a minimum margin.
 buttonMargin = minButtonMargin;
 buttonWidth = buttonLayoutWidth - 2 * buttonMargin;
 if (buttonWidth <= 0) {
 // The available width (half of the viewfinder) is less than the minimum margins.
 // Use all the available width for the button.
 buttonMargin = 0;
 buttonWidth = buttonLayoutWidth / 2;
 }
 }
 this.goToPrevButtonElement.style.left = buttonMargin + "px";
 this.goToPrevButtonElement.style.width = buttonWidth + "px";
 this.goToPrevButtonElement.style.height = buttonWidth + "px";
 this.goToNextButtonElement.style.right = buttonMargin + "px";
 this.goToNextButtonElement.style.width = buttonWidth + "px";
 this.goToNextButtonElement.style.height = buttonWidth + "px";
 this.goToActiveWidth = 0.2 * viewfinderWidth;
 if (this.goToActiveWidth < buttonLayoutWidth) {
 // The area where a click is equivalent to clicking a go-to button
 // shouldn't be less than the width of the button plus the button margins.
 this.goToActiveWidth = buttonLayoutWidth;
 }
 }

 handleNextPreviousButtonKeyUpEvent(e) {
 var movePrevious = false;
 var moveNext = false;
 if (e.keyCode == 13 || e.keyCode == 32) /* Spacebar or Enter */ {
 e.preventDefault();
 if (e.target == this.goToPrevButtonElement) {
 movePrevious = true;
 }
 else if(e.target == this.goToNextButtonElement) {
 moveNext = true;
 }
 }
 else if (e.keyCode == 37) /* Left Arrow */ {
 movePrevious = true;
 }
 else if (e.keyCode == 39) /* Right Arrow */ {
 moveNext = true;
 }
 if (movePrevious) {
 if (this.galleryObject.currentItemIndex > 0) {
 this.galleryObject.goToPrevFrame();
 if (this.galleryObject.currentItemIndex == 0) {
 this.goToNextButtonElement.focus();
 }
 }
 }
 if (moveNext) {
 if (this.galleryObject.currentItemIndex < this.galleryObject.itemCount - 1) {
 this.galleryObject.goToNextFrame();
 if (this.galleryObject.currentItemIndex == this.galleryObject.itemCount - 1) {
 this.goToPrevButtonElement.focus();
 }
 }
 }
 if (movePrevious || moveNext) {
 this.updateButtonsDisplayState();
 }
 }

 setButtonMouseEnterLeaveHandlers(buttonElement) {
 buttonElement.onmouseenter = this.onMouseEnterButton.bind(this, buttonElement);
 buttonElement.onmouseleave = this.onMouseLeaveButton.bind(this, buttonElement);
 }

 setButtonFocusHandlers(buttonElement) {
 buttonElement.onfocus = this.onButtonGainedFocus.bind(this, buttonElement);
 buttonElement.onblur = this.onButtonLostFocus.bind(this, buttonElement);
 }

 setButtonKeyupHandlers(buttonElement) {
 buttonElement.onkeyup = this.handleNextPreviousButtonKeyUpEvent.bind(this);
 }

 setButtonsVisibility(showPrev, showNext, showMaximize) {
 Gallery.setButtonVisibility(this.goToPrevButtonElement, showPrev);
 Gallery.setButtonVisibility(this.goToNextButtonElement, showNext);
 Gallery.setButtonVisibility(this.maximizeButtonElement, showMaximize);
 }

 hideButtonsNotUnderMouseCursor() {
 var showPrev = this.buttonUnderMouseCursor == this.goToPrevButtonElement;
 var showNext = this.buttonUnderMouseCursor == this.goToNextButtonElement;
 var showMaximize = this.buttonUnderMouseCursor == this.maximizeButtonElement;
 this.setButtonsVisibility(showPrev, showNext, showMaximize);
 }

 startButtonsTimeout() {
 this.buttonsTimeout = setTimeout(function() { this.hideButtonsNotUnderMouseCursor() }.bind(this), 2500);
 }

 killButtonsTimeout() {
 if (this.buttonsTimeout) {
 clearTimeout(this.buttonsTimeout);
 this.buttonsTimeout = null;
 }
 }

 hideButtonsWithoutDelay() {
 this.killButtonsTimeout();
 this.setButtonsVisibility(false, false, false);
 }

 viewfinderActionForMousePosition(point) {
 var itemCount = this.galleryObject.itemCount;
 var currentItemIndex = this.galleryObject.currentItemIndex;
 var viewfinderWidth = this.viewfinderElement.getBoundingClientRect().width;
 var x = point.x;

 if (currentItemIndex > 0) {
 if (x < this.goToActiveWidth) {
 return ViewfinderAction.goToPrev;
 }
 }
 var showNext = false;
 if (currentItemIndex + 1 < itemCount) {
 if (viewfinderWidth - x < this.goToActiveWidth) {
 return ViewfinderAction.goToNext;
 }
 }
 if (this.maximizeButtonElement) {
 return ViewfinderAction.maximize;
 }
 return ViewfinderAction.none;
 }

 updateButtonsVisibility(point) {
 var action = this.viewfinderActionForMousePosition(point);
 var showPrev = action == ViewfinderAction.goToPrev;
 var showNext = action == ViewfinderAction.goToNext;
 var showMaximize = true;

 if (!this.maximizeButtonElement) {
 this.viewfinderElement.style.cursor = (showPrev || showNext) ? 'pointer' : 'default';
 }
 this.setButtonsVisibility(showPrev, showNext, showMaximize);
 this.updateButtonsDisplayState();
 }

 updateButtonsDisplayState() {
 // Update display style of the next/previous buttons so that they are present/removed from the
 // focus loop at the correct indexes.
 var itemCount = this.galleryObject.itemCount;
 var currentIndex = this.galleryObject.currentItemIndex;
 if (currentIndex == 0) {
 this.goToPrevButtonElement.tabIndex = -1;
 this.goToPrevButtonElement.style.display = 'none';
 }
 else {
 this.goToPrevButtonElement.tabIndex = 0;
 this.goToPrevButtonElement.style.display = 'block';
 }

 if (currentIndex == itemCount - 1) {
 this.goToNextButtonElement.tabIndex = -1;
 this.goToNextButtonElement.style.display = 'none';
 }
 else {
 this.goToNextButtonElement.tabIndex = 0;
 this.goToNextButtonElement.style.display = 'block';
 }
 }

 onMouseMoveInViewfinder(point) {
 this.killButtonsTimeout();
 this.updateButtonsVisibility(point);
 this.startButtonsTimeout();
 }

 onMouseEnterViewfinder(point) {
 }

 onMouseLeaveViewfinder(point) {
 this.hideButtonsWithoutDelay();
 }

 onClickInViewfinder(point) {
 this.killButtonsTimeout();
 var action = this.viewfinderActionForMousePosition(point);
 switch (action) {
 case ViewfinderAction.goToPrev:
 this.galleryObject.goToPrevFrame();
 break;
 case ViewfinderAction.goToNext:
 this.galleryObject.goToNextFrame();
 break;
 case ViewfinderAction.maximize:
 if (this.maximizeButtonElement) {
 this.galleryObject.maximizeFrame();
 }
 break;
 }
 this.updateButtonsVisibility(point);
 this.startButtonsTimeout();
 }

 onPageShow() {
 this.hideButtonsWithoutDelay();
 }

 onPageHide() {
 this.hideButtonsWithoutDelay();
 }

 onMouseEnterButton(buttonElement) {
 this.buttonUnderMouseCursor = buttonElement;
 }

 onMouseLeaveButton(buttonElement) {
 this.buttonUnderMouseCursor = null;
 }

 onButtonGainedFocus(buttonElement) {
 Gallery.setButtonVisibility(buttonElement, true);
 }

 onButtonLostFocus(buttonElement) {
 Gallery.setButtonVisibility(buttonElement, false);
 }
}

class GalleryCurrentItemObserver {
 constructor(galleryObject) {
 this.galleryObject = galleryObject;
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {

 }
}

class GalleryImageAndCaptionRollsManager {
 constructor(galleryObject) {
 this.galleryObject = galleryObject;
 var galleryElement = galleryObject.galleryElement;
 this.imageRollElement = galleryElement.getElementsByClassName("gallery-image-roll")[0];
 if (galleryElement.getElementsByClassName("gallery-caption").length > 1) {
 this.captionRollElement = galleryElement.getElementsByClassName("gallery-caption-roll")[0];
 }
 }

 removeTransition() {
 this.imageRollElement.classList.remove("gallery-image-roll-transition");
 if (this.captionRollElement) {
 this.captionRollElement.style.visibility = 'unset';
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 this.removeTransition();
 if (animate) {
 if (this.captionRollElement) {
 this.captionRollElement.style.visibility = 'hidden';
 }
 this.imageRollElement.classList.add("gallery-image-roll-transition");
 this.imageRollElement.addEventListener("transitionend", this.removeTransition.bind(this));
 }
 this.imageRollElement.style.left = -(newItemIndex * 100) + "%";
 if (this.captionRollElement) {
 this.captionRollElement.style.left = -(newItemIndex * 100) + "%";
 }
 }
}

class GalleryAccessibilityManager extends GalleryCurrentItemObserver {
 constructor(galleryObject) {
 super(galleryObject);
 this.announcementRegionElement = this.galleryObject.galleryElement.getElementsByClassName("ax-announcement-region")[0];
 if (this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll").length > 0) {
 this.initializeCaptionIDs();
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 var images = Array.prototype.slice.call(this.galleryObject.galleryElement.getElementsByClassName("gallery-full-image"));
 var captions = [];
 if (this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll").length > 0) {
 var captionRollElement = this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll")[0];
 captions = Array.prototype.slice.call(captionRollElement.getElementsByClassName("gallery-caption"));
 }
 images.forEach(function(image, imageIndex) {
 if(captions.length > 0) {
 var captionIndex = captions.length > 1 ? imageIndex : 0;
 var caption = captions[captionIndex];
 var captionTextElement = this.getFirstParagraphElementOfCaption(caption);
 if (captionTextElement) {
 var shouldHide = captions.length > 1 && newItemIndex != captionIndex;
 captionTextElement.setAttribute("aria-hidden", shouldHide ? "true" : "false");
 }

 if (newItemIndex == imageIndex) {
 this.announceForAccessibility(images[newItemIndex].getAttribute("aria-label"));
 }
 }
 }, this);
 }

 initializeCaptionIDs() {
 if (this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll").length > 0) {
 var captionRollElement = this.galleryObject.galleryElement.getElementsByClassName("gallery-caption-roll")[0];
 var captions = Array.prototype.slice.call(captionRollElement.getElementsByClassName("gallery-caption"));
 var galleryObject = this.galleryObject;
 captions.forEach(function(caption, index) {
 var captionTextElement = this.getFirstParagraphElementOfCaption(caption);
 if (captionTextElement) {
 captionTextElement.id = galleryObject.getCaptionElementIDForIndex(index);
 }
 }, this);
 }
 }

 getFirstParagraphElementOfCaption(caption) {
 var paragraphTagNameArray = ["p", "li"];
 for (var index = 0; index < paragraphTagNameArray.length; index++) {
 var paragraphTagName = paragraphTagNameArray[index];
 var paragraphElementList = caption.getElementsByTagName(paragraphTagName);
 if (paragraphElementList.length > 0) {
 return paragraphElementList[0];
 }
 }
 // no paragraphs/list items
 return null;
 }

 announceForAccessibility(announcement) {
 var liveRegionElement = this.announcementRegionElement;
 setTimeout(function() {
 liveRegionElement.setAttribute("aria-label", announcement);
 }, 500);

 }
}

class GalleryDotManager extends GalleryCurrentItemObserver {
 constructor(galleryObject) {
 super(galleryObject);
 this.dotContainerElement = galleryObject.galleryElement.getElementsByClassName("gallery-dot-container")[0];
 this.setupDotElementKeyupHandlers();
 }

 setupDotElementKeyupHandlers() {
 var dotElements = Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-selectable"));
 dotElements.concat(Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-current")));
 var handler = this.handleDotElementKeyUpEvent.bind(this);
 dotElements.forEach(function(dotElement) {
 dotElement.onkeyup = handler;
 });
 }

 handleDotElementKeyUpEvent(e) {
 var element = e.target;
 var currentIndex = this.galleryObject.currentItemIndex;
 var itemCount = this.galleryObject.itemCount;
 if (e.keyCode == 37) /* Left Arrow */ {
 if (currentIndex > 0) {
 this.galleryObject.goToPrevFrame();
 var selectedDotElement = Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-current"))[0];
 selectedDotElement.focus();
 }
 }
 else if (e.keyCode == 39) /* Right Arrow */ {
 if (currentIndex < itemCount - 1) {
 this.galleryObject.goToNextFrame();
 var selectedDotElement = Array.prototype.slice.call(this.dotContainerElement.getElementsByClassName("gallery-dot-current"))[0];
 selectedDotElement.focus();
 }
 }
 }

 deselectCurrentDot() {
 var currentDotGroupCollection = this.dotContainerElement.getElementsByClassName("gallery-dot-current");
 if (currentDotGroupCollection.length > 0) {
 currentDotGroupCollection[0].setAttribute("aria-checked", "false");
 currentDotGroupCollection[0].tabIndex = -1;
 currentDotGroupCollection[0].className = "gallery-dot-selectable";
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 this.deselectCurrentDot();
 var newCurrentDot = this.dotContainerElement.getElementsByClassName("gallery-dot-selectable")[newItemIndex];
 newCurrentDot.setAttribute("aria-checked", "true");
 newCurrentDot.tabIndex = 0;
 newCurrentDot.className = "gallery-dot-current";

 // work around a bug where WebKit will not render DOM updates sometimes, by temporarily
 // setting the div to display:none, and then back to its previous value.
 var dotDisplay = newCurrentDot.style.display;
 newCurrentDot.style.display = "none";

 setTimeout(function() {
 newCurrentDot.style.display = dotDisplay;
 }, 0);
 }
}

class GalleryMouselessButtonsManager extends GalleryCurrentItemObserver {
 constructor(galleryObject) {
 super(galleryObject);
 var viewfinderElement = galleryObject.viewfinderElement;
 this.goToPrevButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToPrev")[0];
 this.goToPrevButtonElement.onclick = galleryObject.goToPrevFrame.bind(galleryObject);
 this.goToPrevButtonElement.onkeyup = this.handleNextPreviousButtonKeyUpEvent;
 this.goToNextButtonElement = viewfinderElement.getElementsByClassName("gallery-button-goToNext")[0];
 this.goToNextButtonElement.onclick = galleryObject.goToNextFrame.bind(galleryObject);
 this.goToNextButtonElement.onkeyup = this.handleNextPreviousButtonKeyUpEvent;
 this.maximizeButtonElement = viewfinderElement.getElementsByClassName("gallery-button-maximize")[0];
 if (this.maximizeButtonElement) {
 this.maximizeButtonElement.onclick = galleryObject.maximizeFrame.bind(galleryObject);
 }
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 var itemCount = this.galleryObject.itemCount;
 var showNext = newItemIndex + 1 < this.galleryObject.itemCount;
 var showPrev = newItemIndex > 0;
 Gallery.setButtonVisibility(this.goToPrevButtonElement, showPrev);
 Gallery.setButtonVisibility(this.goToNextButtonElement, showNext);
 Gallery.setButtonVisibility(this.maximizeButtonElement, true);
 }
}

class GalleryViewfinderManager {
 addViewfinderHandlers() {
 this.viewfinderElement.onclick = this.onClickInViewfinder.bind(this);
 this.viewfinderElement.onmouseenter = this.onMouseEnterViewfinder.bind(this);
 this.viewfinderElement.onmouseleave = this.onMouseLeaveViewfinder.bind(this);
 this.viewfinderElement.onmousemove = this.onMouseMoveInViewfinder.bind(this);
 }

 addObservers() {
 this.viewfinderObserverArray = [];
 if (!useMouselessButtons()) {
 this.viewfinderObserverArray.push(new GalleryButtonsViewfinderManager(this));
 }
 }

 constructor (galleryObject) {
 this.galleryObject = galleryObject;
 this.galleryElement = galleryObject.galleryElement;
 this.viewfinderElement = this.galleryElement.getElementsByClassName("gallery-image-viewfinder")[0];

 this.addViewfinderHandlers();
 this.addObservers();
 }

 viewfinderMouseEventCoordinates(event) {
 var viewfinderBounds = this.viewfinderElement.getBoundingClientRect();
 var point = { "x" : event.clientX - viewfinderBounds.left, "y" : event.clientY - viewfinderBounds.top };
 return point;
 }

 onMouseEventInViewfinder(event, handlerName) {
 try {
 var point = this.viewfinderMouseEventCoordinates(event);
 this.viewfinderObserverArray.forEach(function (observer) {
 observer[handlerName](point);
 });
 stopEventPropagation(event);
 }
 catch (error) {
 }
 }

 onMouseMoveInViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onMouseMoveInViewfinder");
 }

 onMouseEnterViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onMouseEnterViewfinder");
 }

 onMouseLeaveViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onMouseLeaveViewfinder");
 }

 onClickInViewfinder(event) {
 this.onMouseEventInViewfinder(event, "onClickInViewfinder");
 }

 onPageShow() {
 this.viewfinderObserverArray.forEach(function (observer) {
 observer.onPageShow();
 });
 }

 onPageHide() {
 this.viewfinderObserverArray.forEach(function (observer) {
 observer.onPageHide();
 });
 }

 onCurrentItemChange(oldItemIndex, newItemIndex) {
 this.viewfinderObserverArray.forEach(function(observer) {
 observer.onCurrentItemChange(oldItemIndex, newItemIndex);
 });
 }

}

class TouchManager {
 constructor(galleryObject) {
 this.galleryObject = galleryObject;
 this.viewfinderElement = galleryObject.viewfinderElement;
 this.viewfinderBounds = this.viewfinderElement.getBoundingClientRect();
 this.frameWidth = this.viewfinderBounds.width;
 this.dragTouchID = null;
 this.goToPrevButtonElement = this.viewfinderElement.getElementsByClassName("gallery-button-goToPrev")[0];
 this.goToNextButtonElement = this.viewfinderElement.getElementsByClassName("gallery-button-goToNext")[0];
 var element = this.viewfinderElement;
 element.addEventListener("touchstart", this.onTouchStart.bind(this), true);
 element.addEventListener("touchmove", this.onTouchMove.bind(this), true);
 element.addEventListener("touchend", this.onTouchEnd.bind(this), true);
 element.addEventListener("touchcancel", this.onTouchCancel.bind(this), true);
 }

 viewfinderPositionOfChangedTouchMatchingDragID(event) {
 if (this.dragTouchID) {
 var changedTouchCount = event.changedTouches.length;
 for (var changedTouchIndex = 0; changedTouchIndex < changedTouchCount; changedTouchIndex++) {
 var changedTouch = event.changedTouches[changedTouchIndex];
 if (changedTouch.identifier == this.dragTouchID) {
 var point = { "x" : changedTouch.pageX - this.viewfinderBounds.left, "y" : changedTouch.pageY - this.viewfinderBounds.top };
 return point;
 }
 }
 }
 return null;
 }

 onTouchEvent(event, doDump) {
 if (doDump) {
 }
 stopEventPropagation(event);
 event.preventDefault();
 if (event.changedTouches.length == 0) {
 }
 }

 onTouchStart(event) {
 try {
 this.onTouchEvent(event, true);
 if (!this.dragTouchID) {
 if (event.changedTouches.length > 0) {
 var changedTouch = event.changedTouches[0];
 this.dragTouchID = changedTouch.identifier;
 this.dragStartPoint = this.viewfinderPositionOfChangedTouchMatchingDragID(event);
 this.dragStartTime = new Date().getTime();
 this.dragStartX = this.dragStartPoint.x;
 this.dragStartItemIndex = this.galleryObject.currentItemIndex;
 this.lastTouchPosition = this.dragStartPoint;
 }
 }
 }
 catch (error) {
 }
 }

 onTouchMove(event) {
 try {
 this.onTouchEvent(event, false);
 var changedTouchPosition = this.viewfinderPositionOfChangedTouchMatchingDragID(event);
 if (changedTouchPosition) {
 var dragCurrX = changedTouchPosition.x;
 var deltaX = dragCurrX - this.dragStartX;
 var relativeDeltaX = deltaX / this.frameWidth;
 var newItemIndex = this.dragStartItemIndex - relativeDeltaX;
 if (newItemIndex >= 0 && newItemIndex <= this.galleryObject.itemCount - 1) {
 this.galleryObject.changeCurrentItemIndex(newItemIndex, false);
 }
 this.lastTouchPosition = changedTouchPosition;
 }
 }
 catch (error) {
 }
 }

 onTouchEndOrCancel(event) {
 var changedTouchPosition = this.viewfinderPositionOfChangedTouchMatchingDragID(event);
 if (changedTouchPosition) {
 var dragEndPoint = changedTouchPosition;
 var dragEndTime = new Date().getTime();
 var didChangeIndex = false;
 var endItemIndex = this.galleryObject.currentItemIndex;
 var intEndItemIndex = Math.round(endItemIndex);
 var deltaT = dragEndTime - this.dragStartTime;
 // If duration short enough.
 if (deltaT < 250) {
 // If it hasn't resulted in a current item change.
 if (intEndItemIndex == this.dragStartItemIndex) {
 var absDeltaX = Math.abs(dragEndPoint.x-this.dragStartPoint.x);
 var absDeltaY = Math.abs(dragEndPoint.y-this.dragStartPoint.y);
 // If absDeltaX is not trivially small
 // and absDeltaY is no larger than a fraction of absDeltaX.
 if (absDeltaX >= 50 && absDeltaY <= 0.4 * absDeltaX) {
 if (endItemIndex > intEndItemIndex) {
 if (intEndItemIndex < this.galleryObject.itemCount - 1) {
 intEndItemIndex++;
 didChangeIndex = true;
 }
 } else if (endItemIndex < intEndItemIndex) {
 if (intEndItemIndex > 0) {
 intEndItemIndex--;
 didChangeIndex = true;
 }
 }
 }
 }
 }

 this.galleryObject.changeCurrentItemIndex(intEndItemIndex, true);

 if (!didChangeIndex) {
 // see if we can handle this as a tap
 if (this.dragStartPoint.x == dragEndPoint.x && this.dragStartPoint.y == dragEndPoint.y) {
 var viewfinderBounds = this.viewfinderElement.getBoundingClientRect();
 var prevButtonBounds = this.goToPrevButtonElement.getBoundingClientRect();
 var nextButtonBounds = this.goToNextButtonElement.getBoundingClientRect();
 var pointInViewfinder = { "x" : event.changedTouches[0].clientX - viewfinderBounds.left, "y" : event.changedTouches[0].clientY - viewfinderBounds.top };
 prevButtonBounds.x -= viewfinderBounds.x;
 prevButtonBounds.y -= viewfinderBounds.y;
 nextButtonBounds.x -= viewfinderBounds.x;
 nextButtonBounds.y -= viewfinderBounds.y;

 var x = pointInViewfinder.x;
 var y = pointInViewfinder.y;
 var gotoPrev = prevButtonBounds.x <= x && x <= prevButtonBounds.x + prevButtonBounds.width && prevButtonBounds.y <= y && y <= prevButtonBounds.y + prevButtonBounds.height;
 var gotoNext = nextButtonBounds.x <= x && x <= nextButtonBounds.x + nextButtonBounds.width && nextButtonBounds.y <= y && y <= nextButtonBounds.y + nextButtonBounds.height;

 if (gotoPrev) {
 if (this.galleryObject.currentItemIndex > 0) {
 this.galleryObject.goToPrevFrame();
 }
 }
 else if (gotoNext) {
 if (this.galleryObject.currentItemIndex < this.galleryObject.itemCount - 1) {
 this.galleryObject.goToNextFrame();
 }
 }
 }
 }

 this.dragStartX = null;
 this.dragStartItemIndex = null;
 this.dragTouchID = null;
 this.lastTouchPosition = null;
 }
 }

 onTouchEnd(event) {
 try {
 this.onTouchEvent(event, true);
 this.onTouchEndOrCancel(event);
 }
 catch (error) {
 }
 }

 onTouchCancel(event) {
 try {
 this.onTouchEvent(event, true);
 this.onTouchEndOrCancel(event);
 }
 catch (error) {
 }
 }
}

class Gallery {
 createImageRollElement() {
 this.viewfinderElement = this.galleryElement.getElementsByClassName("gallery-image-viewfinder")[0];
 this.imageRollElement = this.viewfinderElement.getElementsByClassName("gallery-image-roll")[0];

 var imageFrameElementArray = Array.prototype.slice.call(this.viewfinderElement.getElementsByClassName("gallery-image-cropper"));
 this.itemCount = imageFrameElementArray.length;
 }

 completeItemCaptionElements() {
 //this.itemCaptionRolodexElement = this.galleryElement.getElementsByClassName("gallery-item-caption-rolodex")[0];
 //this.itemCaptionRolodexElement.onclick = stopEventPropagation;
 }

 addSelectionDots() {
 this.dotContainerElement = this.galleryElement.getElementsByClassName("gallery-dot-container")[0];
 this.innerDotContainerElement = this.dotContainerElement.getElementsByClassName("gallery-dot-inner-container")[0];
 if (this.innerDotContainerElement.getBoundingClientRect().width < this.dotContainerElement.getBoundingClientRect().width) {
 var dotExtenderElementArray = Array.prototype.slice.call(this.innerDotContainerElement.getElementsByClassName("gallery-dot-extender"));
 for (var itemIndex = 0; itemIndex < this.itemCount; itemIndex++) {
 var dotExtenderElement = dotExtenderElementArray[itemIndex];
 dotExtenderElement.onclick = this.selectFrame.bind(this, itemIndex);

 var captionIndex = this.galleryElement.getElementsByClassName("gallery-caption").length > 1 ? itemIndex : 0;
 var captionID = this.getCaptionElementIDForIndex(captionIndex);
 var dotElement = dotExtenderElement.getElementsByTagName("span")[0];
 dotElement.setAttribute("aria-describedby", captionID);
 }
 } else {
 this.innerDotContainerElement.style.display = 'none';
 }
 }

 completeTree() {
 this.createImageRollElement();
 this.completeItemCaptionElements();
 if (!this.isFullscreen()) {
 this.addSelectionDots();
 }
 }

 addWindowEventListeners() {
 window.addEventListener("pageshow", this.onPageShow.bind(this));
 window.addEventListener("pagehide", this.onPageHide.bind(this));
 }

 createObservers() {
 this.currentItemObserverArray = [];
 if (!this.isFullscreen()) {
 this.currentItemObserverArray.push(new GalleryDotManager(this));
 if (useMouselessButtons()) {
 this.currentItemObserverArray.push(new GalleryMouselessButtonsManager(this));
 }
 }
 this.currentItemObserverArray.push(new GalleryAccessibilityManager(this));
 }

 startUp() {
 this.currentItemIndex = -1;
 var newItemIndex = parseInt(this.galleryElement.getAttribute("data-current-item-index"));
 this.changeCurrentItemIndex(newItemIndex, false);

 }

 constructor (galleryElement) {
 this.galleryElement = galleryElement;

 this.completeTree();

 this.viewfinderManager = new GalleryViewfinderManager(this);

 this.addWindowEventListeners();

 this.createObservers();
 this.imageAndCaptionRollsManager = new GalleryImageAndCaptionRollsManager(this);

 if (!useMouselessButtons()) {
 this.touchManager = new TouchManager(this);
 }

 this.startUp();
 }

 isFullscreen() {
 return false;
 }

 changeCurrentItemIndex(newItemIndex, animate) {
 if (this.currentItemIndex != newItemIndex) {
 if (Math.abs(newItemIndex - this.currentItemIndex) > 1.0) {
 // Animation is supported only between neighbouring frames.
 animate = false;
 }
 this.imageAndCaptionRollsManager.onCurrentItemChange(this.currentItemIndex, newItemIndex, animate);
 var intCurrentItemIndex = Math.round(this.currentItemIndex);
 var intNewItemIndex = Math.round(newItemIndex);
 if (intNewItemIndex != intCurrentItemIndex) {
 this.onCurrentItemChange(intCurrentItemIndex, intNewItemIndex, animate);
 this.galleryElement.setAttribute("data-current-item-index", intNewItemIndex);
 }
 this.currentItemIndex = newItemIndex;
 this.updateImagesAXVisibility();
 }
 }

 updateImagesAXVisibility() {
 var currentIndex = this.currentItemIndex;
 var images = Array.prototype.slice.call(this.galleryElement.getElementsByClassName("gallery-full-image"));
 images.forEach(function(image, index) {
 image.setAttribute("aria-hidden", index == currentIndex ? "false" : "true");
 });
 }

 goToPrevFrame() {
 var currentItemIndex = this.currentItemIndex;
 this.changeCurrentItemIndex(currentItemIndex-1, true);
 }

 goToNextFrame() {
 var currentItemIndex = this.currentItemIndex;
 this.changeCurrentItemIndex(currentItemIndex+1, true);
 }

 selectFrame(newItemIndex) {
 this.changeCurrentItemIndex(newItemIndex, true);
 }

 maximizeFrame() {
 }

 onCurrentItemChange(oldItemIndex, newItemIndex, animate) {
 this.currentItemObserverArray.forEach(function(observer) {
 observer.onCurrentItemChange(oldItemIndex, newItemIndex, animate);
 });

 this.viewfinderManager.onCurrentItemChange(oldItemIndex, newItemIndex);
 }

 onPageShow() {
 this.viewfinderManager.onPageShow();
 }

 onPageHide() {
 this.viewfinderManager.onPageHide();
 }

 getCaptionElementIDForIndex(index) {
 var captionIndex = index+1;
 return this.galleryElement.id + "-caption-" + captionIndex;
 }

 static setButtonVisibility(buttonElement, visible) {
 if (buttonElement) {
 buttonElement.style.opacity = visible ? 1.0 : 0.0;
 }
 }
}

class RegularGallery extends Gallery {
 static setDisplayToNoneForElementsOfClass(className) {
 var elementArray = Array.prototype.slice.call(document.getElementsByClassName(className));
 elementArray.forEach(
 function(element) {
 element.style.display = 'none';
 });
 }

 static loadGalleries() {
 this.setDisplayToNoneForElementsOfClass("gallery-fallback");
 this.setDisplayToNoneForElementsOfClass("gallery-fallback-separator");

 var galleryElementArray = Array.prototype.slice.call(document.getElementsByClassName("gallery"));
 galleryElementArray.forEach(function(galleryElement) {
 galleryElement.style.display = '';
 new RegularGallery(galleryElement);
 });
 }
}

function Body_onLoad() {
 RegularGallery.loadGalleries();
}

OPS/images/cover-image.png

OPS/images/image-7.png

OPS/images/border-image-3.png

OPS/images/image-6.png

OPS/images/border-image-2.png

OPS/images/image-8.png

OPS/images/image-9.png

OPS/toc.xhtml
		Page 1

		Cover Page

		Page 1

OPS/images/image-1.png

OPS/images/image.png

OPS/images/image-3.png

OPS/images/image-2.png

OPS/images/image-4.png

OPS/images/IMG_3172.jpg

OPS/images/border-image.png

OPS/images/image-12.png

OPS/images/border-image-1.png

OPS/images/image-10.png

OPS/images/image-5.png

OPS/images/image-11.png

OPS/images/IMG_3192.jpg

OPS/images/IMG_3113.jpg

OPS/images/border-image-5.png

OPS/images/border-image-4.png

OPS/images/image-14.png

OPS/images/IMG_8778.jpg

OPS/images/image-13.png

OPS/images/image-17.png

OPS/images/IMG_3193.jpg

OPS/images/image-16.png

OPS/images/IMG_2828.jpg

OPS/images/image-15.png

OPS/images/IMG_2525.jpg

